If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-4.9t^2+19.62t+1
We move all terms to the left:
0-(-4.9t^2+19.62t+1)=0
We add all the numbers together, and all the variables
-(-4.9t^2+19.62t+1)=0
We get rid of parentheses
4.9t^2-19.62t-1=0
a = 4.9; b = -19.62; c = -1;
Δ = b2-4ac
Δ = -19.622-4·4.9·(-1)
Δ = 404.5444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19.62)-\sqrt{404.5444}}{2*4.9}=\frac{19.62-\sqrt{404.5444}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19.62)+\sqrt{404.5444}}{2*4.9}=\frac{19.62+\sqrt{404.5444}}{9.8} $
| 2(3x+8)=4(x+4) | | 5/9=1/3+g | | 3x3=9x2+10 | | 55=2x+10 | | 10-6w=-4w | | 2w-6w=-20 | | |5m-8|=93 | | 2(3x+8=4(x+4) | | p/(-1)+0.94=(-1) | | 5/9=1/4+b | | j=2j−8 | | -3-7=-8+x | | 6+4(2+8n)=206 | | x=x(756)-56 | | 9r+6=10r | | 5(1+7p)-3p=-123 | | 2/3=-3/4t | | x−1/3=6 | | -6−3f=-4f−1 | | 3x−2=37 | | -7t+6=-8t | | 22-44=3(x-1)-7 | | 8t=21 | | 4n=-6+10n | | 10k+3=7k+9 | | -4+p=p | | x=x-56(756) | | 37+n=-56 | | 10-2t=1.94 | | 5a+20.a=5 | | 6+2t=t | | -7+8q=7q |